Blog destinado, a publicar y compartir información relacionada con la tecnología eléctrica

La regulación de un transformador se define como al diferencia entre los voltajes secundarios en vacío y a plena carga, medidos en terminales, expresada esta diferencia como un porcentaje del voltaje a plena carga. Para el cálculo del voltaje en vacío se debe tomar en consideración el factor de potencia de la carga.

 

La carga de los transformadores de potencia varián constantemente, ocurriendo la mayor variación en los periodos de mayor actividad industrial y comercial, esto provoca que el voltaje en los secundarios de los transformadores varien de acuerdo con la carga y el  factor de potencia, dependiendo si esta  en atraso, en adelanto o si es la unidad. Ya que todos los equipos eléctricos, electrónicos, motores, lámparas son muy sensibles a los cambios de tensión que pudiesen causarles daños es muy importante tener una buena regulación de voltaje, por lo que es muy importante conocer las características de los elementos constructivos de transformadores y líneas de transmisión, además de su comportamiento ante carga capacitiva, inductivas o resistiva.

El Coeficiente de Regulación de Voltaje o la Regulación de Voltaje (RV) es una cantidad que compara el voltaje de salida sin carga (en Vacío) con el voltaje de salida a plena carga y se define por la ecuación.

ecua5

VS:    Voltaje de Salida de una línea de transmisión o

Voltaje Secundario de un transformador

A nivel de suministro de tensión se desea tener una regulación de voltaje tan pequeña como sea posible.

Para un transformador ideal, RV = 0%, lo cual nos indica que sus devanados no presentan una resistencia y no requiere de potencia reactiva para su funcionamiento. Sin embargo, los transformadores reales tienen cierta resistencia en los devanados y requieren de una potencia reactiva para producir su campo magnéticos, es decir, posee dentro de el impedancias en serie, tal y como se observa en la figura 1, entonces su voltaje de salida varia de acuerdo con la carga aun cuando el voltaje de entrada y la frecuencia permanezcan constante.

La variación de la tensión en el secundario depende esencialmente de dos variables, de la corriente absorbida por la carga y de su factor de potencia.

Para obtener la regulación de tensión en un transformador se requiere entender las caídas de tensión que se producen en su interior. Consideremos el circuito equivalente del transformador simplificado: los efectos de la rama de excitación en la regulación de tensión del transformador puede ignorarse, por tanto solamente las impedancias en serie deben tomarse en cuenta. La regulación de tensión de un transformador depende tanto de la magnitud de estas impedancias como del ángulo fase de la corriente que circula por el transformador. La forma más fácil de determinar el efecto de la impedancia y de los ángulos de fase de la intensidad circulante en la regulación de voltaje del transformador es analizar el diagrama fasorial, un esquema de las tensiones e intensidades fasoriales del transformador. En la figura 1, se observa el circuito equivalente del transformador simplificado donde se ignoran los efectos de la rama de excitación y se considera solo las impedancias en serie.

 

t6

FIGURA 1. MODELO APROXIMADO DEL TRANSFORMADOR, REFERIDO AL SECUNDARIO

Un diagrama fasorial es la representación visual de una ecuación, estos se pueden usar para observar los ángulos de fases normales en la regulación de un transformador. La figura 2, muestra un diagrama fasorial de un transformador que opera con un factor de potencia en retraso se observa que Vp/a > Vs para carga en retraso, es decir, una impedancia predominantemente inductiva, por lo que la regulación de voltaje deberá ser mayor que cero.

 t7

FIGURA 2. DIAGRAMA FASORIAL DEL TRANSFORMADOR, FACTOR DE POTENCIA EN ATRASO

En la figura 3, se muestra un diagrama fasorial con factor de potencia igual a la unidad y el voltaje en el secundario es menor comparado con el voltaje primario referido, por lo que la regulación de voltaje es mayor que cero, pero menor de lo que era para una corriente en atraso.

 t8

FIGURA 3. DIAGRAMA FASORIAL DEL TRANSFORMADOR, FACTOR DE POTENCIA UNIDAD

Si la corriente secundaria esta en adelanto, el voltaje secundario puede en realidad ser mayor que el voltaje primario referido, en este caso, la impedancia es predominantemente capacitiva y el transformador tendrá una regulación negativa.

 t9

FIGURA 4. DIAGRAMA FASORIAL DEL TRANSFORMADOR, FACTOR DE POTENCIA EN ADELANTO

Para transformadores de potencia superiores a 5KVA, los valores de las correspondientes de caídas de tensión son

Para carga puramente inductiva Vs = 0,96 Vp/a

Para carga puramente óhmica Vs = 0,98 Vp/a

Para carga puramente capacitiva Vs = 1,02 Vp/a

Para factor de potencia capacitivo la tensión en carga puede ser mayor que la tensión en vacío. Este fenómeno se conoce como efecto Ferranti y puede producirse en todos los casos que las líneas eléctricas tienen conectadas cargas capacitivas.

Las cargas inductivas son desexcitantes puesto que provocan caídas de tensión, mientras que las cargas capacitivas son excitantes, ya que provocan un aumento de tensión.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Nube de etiquetas

A %d blogueros les gusta esto: